Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.941
Filtrar
1.
Carbohydr Polym ; 335: 122106, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616080

RESUMEN

More than 3000 proteins are now known to bind to glycosaminoglycans (GAGs). Yet, GAG-protein systems are rather poorly understood in terms of selectivity of recognition, molecular mechanism of action, and translational promise. High-throughput screening (HTS) technologies are critically needed for studying GAG biology and developing GAG-based therapeutics. Microarrays, developed within the past two decades, have now improved to the point of being the preferred tool in the HTS of biomolecules. GAG microarrays, in which GAG sequences are immobilized on slides, while similar to other microarrays, have their own sets of challenges and considerations. GAG microarrays are rapidly becoming the first choice in studying GAG-protein systems. Here, we review different modalities and applications of GAG microarrays presented to date. We discuss advantages and disadvantages of this technology, explain covalent and non-covalent immobilization strategies using different chemically reactive groups, and present various assay formats for qualitative and quantitative interpretations, including selectivity screening, binding affinity studies, competitive binding studies etc. We also highlight recent advances in implementing this technology, cataloging of data, and project its future promise. Overall, the technology of GAG microarray exhibits enormous potential of evolving into more than a mere screening tool for studying GAG - protein systems.


Asunto(s)
Bioensayo , Glicosaminoglicanos , Unión Competitiva , Análisis por Micromatrices , Investigación
2.
Carbohydr Polym ; 332: 121905, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431412

RESUMEN

Glycosaminoglycans (GAGs), as a class of biopolymers, play pivotal roles in various biological metabolisms such as cell signaling, tissue development, cell apoptosis, immune modulation, and growth factor activity. They are mainly present in the colon in free forms, which are essential for maintaining the host's health by regulating the colonization and proliferation of gut microbiota. Therefore, it is important to explain the specific members of the gut microbiota for GAGs' degradation and their enzymatic machinery in vivo. This review provides an outline of GAGs-utilizing entities in the Bacteroides, highlighting their polysaccharide utilization loci (PULs) and the enzymatic machinery involved in chondroitin sulfate (CS) and heparin (Hep)/heparan sulfate (HS). While there are some variations in GAGs' degradation among different genera, we analyze the reputed GAGs' utilization clusters in lactic acid bacteria (LAB), based on recent studies on GAGs' degradation. The enzymatic machinery involved in Hep/HS and CS metabolism within LAB is also discussed. Thus, to elucidate the precise mechanisms utilizing GAGs by diverse gut microbiota will augment our understanding of their effects on human health and contribute to potential therapeutic strategies for diseases.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillales , Humanos , Glicosaminoglicanos/metabolismo , Bacteroides/metabolismo , Lactobacillales/metabolismo , Heparina , Heparitina Sulfato
3.
Artículo en Chino | MEDLINE | ID: mdl-38433691

RESUMEN

Objective:To analyze the characteristics of otorhinolaryngological clinical manifestations in children with Mucopolysaccharide(MPS) type Ⅰ and type II in order to improve the knowledge of otorhinolaryngologists about this disease. Methods:Clinical data related to 55 children with MPS type Ⅰ and type II were retrospectively analyzed to investigate the clinical manifestations of MPS in ENT. Results:All 40 patients(72.72%) with MPS had at least one ENT symptom during the course of the disease, with 95% of them having an ENT symptom prior to the diagnosis of MPS; upper airway obstruction was the most common ENT symptom(34, 85.00%), followed by recurrent upper respiratory tract infections(23, 57.50%), and lastly, hearing loss(11, 27.50%); all 26 patients had undergone at least one surgical procedure, of which 15(57.69%) had undergone ENT surgery, and all of these patients underwent ENT surgery before diagnosis. The most common ENT surgery was adenoidectomy. Conclusion:Early clinical manifestations of MPS patients are atypical, but the early and prevalent appearance of otolaryngologic symptoms and increased awareness of the disease among otolaryngologists has a positive impact on the prognosis of MPS.


Asunto(s)
Sordera , Enfermedades Nasales , Niño , Humanos , Estudios Retrospectivos , Adenoidectomía , Glicosaminoglicanos
4.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474135

RESUMEN

Nucleotides, glycosaminoglycans, and omega-3 essential fatty acids (O3s) could be used for improving skin health, although their modes of action, alone or in combination, are not yet fully understood. To gain some insight into these mechanisms, we performed two in vitro tests and one in vivo pilot trial. The effects on human dermal fibroblast proliferation and migration were evaluated with the following compounds and combinations: 0.156 mg/mL O3s, 0.0017 mg/mL hyaluronic acid (HA), 0.0004 mg/mL dermatan sulfate (DS), 0.0818 mg/mL nucleotides, and [O3s + HA + DS] and [O3s + HA + DS + nucleotides] at the same concentrations. In both in vitro assays, adding nucleotides to [O3s + HA + DS] provided significant improvements. The resulting combination [O3s + HA + DS + nucleotides] was then tested in vivo in dogs with atopic dermatitis by oral administration of a supplement providing a daily amount of 40 mg/kg nucleotides, 0.9 mg/kg HA, 0.18 mg/kg DS, 53.4 mg/kg EPA, and 7.6 mg/kg DHA. After 30 days, the pruritus visual analog scale (pVAS) score was significantly reduced, and no adverse effects were observed. In conclusion, the combination of nucleotides plus glycosaminoglycans and O3s could serve as a useful therapeutic alternative in skin health applications.


Asunto(s)
Dermatitis Atópica , Enfermedades de los Perros , Ácidos Grasos Omega-3 , Humanos , Animales , Perros , Dermatitis Atópica/tratamiento farmacológico , Saccharomyces cerevisiae , Enfermedades de los Perros/tratamiento farmacológico , Prurito/tratamiento farmacológico , Ácidos Grasos Omega-3/uso terapéutico , Glicosaminoglicanos/uso terapéutico , Ácido Hialurónico/uso terapéutico , Proliferación Celular , Fibroblastos
5.
Methods Mol Biol ; 2783: 167-176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478232

RESUMEN

Decellularized human-adipose tissue (hDAT) can serve as an alternative to two-dimensional monolayer culture and current ECM hydrogels due to its unlimited availability and cytocompatibility. A major hurdle in the clinical translation and integration of hDAT and other hydrogels into current in vitro culture processes is adherence to current good manufacturing practices (cGMP). Transferring of innovative technologies, including hydrogels, requires the establishing standardized protocols for quality assurance and quality control (QA/QC) of the material.Integration of basic characterization techniques, including physiochemical characterization, structural/morphological characterization, thermal and mechanical characterization, and biological characterization, in addition to the reduction of batch-to-batch variability and establishment of proper sterilization, storage, and fabrication processes verifies the integrity of the hydrogel. Obatala Sciences has established a characterization protocol that involves a series of assays including the evaluation of gelation properties, protein content, glycosaminoglycan content, soluble collagen content, and DNA content of hDAT.


Asunto(s)
Matriz Extracelular , Hidrogeles , Humanos , Hidrogeles/química , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Glicosaminoglicanos/metabolismo , Control de Calidad , Ingeniería de Tejidos/métodos
6.
Glycobiology ; 34(5)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38438145

RESUMEN

This review delves into the roles of glycosaminoglycans (GAGs), integral components of proteoglycans, in tooth development. Proteoglycans consist of a core protein linked to GAG chains, comprised of repeating disaccharide units. GAGs are classified into several types, such as hyaluronic acid, heparan sulfate, chondroitin sulfate, dermatan sulfate, and keratan sulfate. Functioning as critical macromolecular components within the dental basement membrane, these GAGs facilitate cell adhesion and aggregation, and play key roles in regulating cell proliferation and differentiation, thereby significantly influencing tooth morphogenesis. Notably, our recent research has identified the hyaluronan-degrading enzyme Transmembrane protein 2 (Tmem2) and we have conducted functional analyses using mouse models. These studies have unveiled the essential role of Tmem2-mediated hyaluronan degradation and its involvement in hyaluronan-mediated cell adhesion during tooth formation. This review provides a comprehensive summary of the current understanding of GAG functions in tooth development, integrating insights from recent research, and discusses future directions in this field.


Asunto(s)
Glicosaminoglicanos , Ácido Hialurónico , Ratones , Animales , Glicosaminoglicanos/metabolismo , Proteoglicanos/metabolismo , Sulfato de Queratano/metabolismo , Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/metabolismo , Odontogénesis , Dermatán Sulfato
7.
Clin Transl Sci ; 17(4): e13776, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38545863

RESUMEN

A quantitatively-driven evaluation of existing clinical data and associated knowledge to accelerate drug discovery and development is a highly valuable approach across therapeutic areas, but remains underutilized. This is especially the case for rare diseases for which development is particularly challenging. The current work outlines an organizational framework to support a quantitatively-based reverse translation approach to clinical development. This approach was applied to characterize predictors of the trajectory of cognition in Hunter syndrome (Mucopolysaccharidosis Type II; MPS-II), a rare X-linked lysosomal storage disorder, highly heterogeneous in its course. Specifically, we considered ways to refine target populations based on age, cognitive status, and biomarkers, that is, cerebrospinal fluid glycosaminoglycans (GAG), at trial entry. Data from a total of 138 subjects (age range 2.5 to 10.1 years) from Takeda-sponsored internal studies and external natural history studies in MPS-II were included. Quantitative analyses using mixed-effects models were performed to characterize the relationships between neurocognitive outcomes and potential indicators of disease progression. Results revealed a specific trajectory in cognitive development across age with an initial progressive phase, followed by a plateau between 4 and 8 years and then a variable declining phase. Additionally, results suggest a faster decline in cognition among subjects with lower cognitive scores or with higher cerebrospinal fluid GAG at enrollment. These results support differences in the neurocognitive course of MPS-II between distinct groups of patients based on age, cognitive function, and biomarker status at enrollment. These differences should be considered when designing future clinical trials.


Asunto(s)
Mucopolisacaridosis II , Humanos , Preescolar , Niño , Mucopolisacaridosis II/diagnóstico , Mucopolisacaridosis II/tratamiento farmacológico , Glicosaminoglicanos/uso terapéutico , Biomarcadores , Progresión de la Enfermedad
8.
Int J Biol Macromol ; 264(Pt 2): 130743, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462098

RESUMEN

Heparin, a member of the glycosaminoglycan family, is renowned as the most negatively charged biomolecule discovered within the realm of human biology. This polysaccharide serves a vital role as a regulator for various proteins, cells, and tissues within the human body, positioning itself as a pivotal macromolecule of significance. The domain of biology has witnessed substantial interest in the intricate design of heparin and its derivatives, particularly focusing on heparin-based polymers and hydrogels. This intrigue spans a wide spectrum of applications, encompassing diverse areas such as protein adsorption, anticoagulant properties, controlled drug release, development of implants, stent innovation, enhancement of blood compatibility, acceleration of wound healing, and pioneering strides in tissue engineering. This comprehensive overview delves into a multitude of developed heparin conjugates, employing various methods, and explores their functions in both the biomedicine and electronics fields. The efficacy of materials derived from heparin is also thoroughly investigated, encompassing considerations such as thrombogenicity, drug release kinetics, affinity for growth factors (GFs), biocompatibility, and electrochemical analyses. We firmly believe that by redirecting focus towards research and advancements in heparin-related polymers/hydrogels, this study will ignite further research and accelerate potential breakthroughs in this promising and evolving field of discovery.


Asunto(s)
Anticoagulantes , Heparina , Humanos , Heparina/química , Anticoagulantes/química , Glicosaminoglicanos , Hidrogeles/química , Polímeros/química , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química
9.
Cell Signal ; 118: 111149, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522808

RESUMEN

G protein-coupled receptors (GPCR) and glycosaminoglycans (GAGs) are two essential components of the cell surface that regulate physiological processes in the body. GPCRs are the most extensive family of transmembrane receptors that control cellular responses to extracellular stimuli, while GAGs are polysaccharides that contribute to the function of the extracellular matrix (ECM). Due to their proximity to the plasma membrane, GAGs participate in signal transduction by interacting with various extracellular molecules and cell surface receptors. GAGs can directly interact with certain GPCRs or their ligands (chemokines, peptide hormones and neuropeptides, structural proteins, and enzymes) from the glutamate receptor family, the rhodopsin receptor family, the adhesion receptor family, and the secretin receptor family. These interactions have recently become an emerging topic, providing a new avenue for understanding how GPCR signaling is regulated. This review discusses our current state of knowledge about the role of GAGs in GPCR signaling and function.


Asunto(s)
Glicosaminoglicanos , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Membrana Celular/metabolismo , Rodopsina/metabolismo
10.
Sci Signal ; 17(828): eabl3758, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502733

RESUMEN

CXCL17 is a chemokine principally expressed by mucosal tissues, where it facilitates chemotaxis of monocytes, dendritic cells, and macrophages and has antimicrobial properties. CXCL17 is also implicated in the pathology of inflammatory disorders and progression of several cancers, and its expression is increased during viral infections of the lung. However, the exact role of CXCL17 in health and disease requires further investigation, and there is a need for confirmed molecular targets mediating CXCL17 functional responses. Using a range of bioluminescence resonance energy transfer (BRET)-based assays, here we demonstrated that CXCL17 inhibited CXCR4-mediated signaling and ligand binding. Moreover, CXCL17 interacted with neuropillin-1, a VEGFR2 coreceptor. In addition, we found that CXCL17 only inhibited CXCR4 ligand binding in intact cells and demonstrated that this effect was mimicked by known glycosaminoglycan binders, surfen and protamine sulfate. Disruption of putative GAG binding domains in CXCL17 prevented CXCR4 binding. This indicated that CXCL17 inhibited CXCR4 by a mechanism of action that potentially required the presence of a glycosaminoglycan-containing accessory protein. Together, our results revealed that CXCL17 is an endogenous inhibitor of CXCR4 and represents the next step in our understanding of the function of CXCL17 and regulation of CXCR4 signaling.


Asunto(s)
Quimiocinas CXC , Glicosaminoglicanos , Quimiocinas CXC/metabolismo , Glicosaminoglicanos/farmacología , Ligandos , Quimiocinas/metabolismo , Transducción de Señal , Receptores CXCR4/genética , Quimiocina CXCL12
11.
Nat Commun ; 15(1): 2723, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548715

RESUMEN

Integration of extracellular signals by neurons is pivotal for brain development, plasticity, and repair. Axon guidance relies on receptor-ligand interactions crosstalking with extracellular matrix components. Semaphorin-5A (Sema5A) is a bifunctional guidance cue exerting attractive and inhibitory effects on neuronal growth through the interaction with heparan sulfate (HS) and chondroitin sulfate (CS) glycosaminoglycans (GAGs), respectively. Sema5A harbors seven thrombospondin type-1 repeats (TSR1-7) important for GAG binding, however the underlying molecular basis and functions in vivo remain enigmatic. Here we dissect the structural basis for Sema5A:GAG specificity and demonstrate the functional significance of this interaction in vivo. Using x-ray crystallography, we reveal a dimeric fold variation for TSR4 that accommodates GAG interactions. TSR4 co-crystal structures identify binding residues validated by site-directed mutagenesis. In vitro and cell-based assays uncover specific GAG epitopes necessary for TSR association. We demonstrate that HS-GAG binding is preferred over CS-GAG and mediates Sema5A oligomerization. In vivo, Sema5A:GAG interactions are necessary for Sema5A function and regulate Plexin-A2 dependent dentate progenitor cell migration. Our study rationalizes Sema5A associated developmental and neurological disorders and provides mechanistic insights into how multifaceted guidance functions of a single transmembrane cue are regulated by proteoglycans.


Asunto(s)
Glicosaminoglicanos , Semaforinas , Glicosaminoglicanos/metabolismo , Proteoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Movimiento Celular , Semaforinas/genética , Semaforinas/metabolismo
12.
Int J Biol Macromol ; 265(Pt 1): 130696, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458288

RESUMEN

There has been significant progress in the field of three-dimensional (3D) bioprinting technology, leading to active research on creating bioinks capable of producing structurally and functionally tissue-mimetic constructs. Ti3C2Tx MXene nanoparticles (NPs), promising two-dimensional nanomaterials, are being investigated for their potential in muscle regeneration due to their unique physicochemical properties. In this study, we integrated MXene NPs into composite hydrogels made of gelatin methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) to develop bioinks (namely, GHM bioink) that promote myogenesis. The prepared GHM bioinks were found to offer excellent printability with structural integrity, cytocompatibility, and microporosity. Additionally, MXene NPs within the 3D bioprinted constructs encouraged the differentiation of C2C12 cells into skeletal muscle cells without additional support of myogenic agents. Genetic analysis indicated that representative myogenic markers both for early and late myogenesis were significantly up-regulated. Moreover, animal studies demonstrated that GHM bioinks contributed to enhanced regeneration of skeletal muscle while reducing immune responses in mice models with volumetric muscle loss (VML). Our results suggest that the GHM hydrogel can be exploited to craft a range of strategies for the development of a novel bioink to facilitate skeletal muscle regeneration because these MXene-incorporated composite materials have the potential to promote myogenesis.


Asunto(s)
Hidrogeles , Nanopartículas , Nitritos , Elementos de Transición , Ratones , Animales , Hidrogeles/farmacología , Hidrogeles/química , Gelatina/química , Impresión Tridimensional , Glicosaminoglicanos , Músculo Esquelético , Andamios del Tejido/química , Ingeniería de Tejidos/métodos
13.
Carbohydr Polym ; 333: 121979, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494232

RESUMEN

Heparan sulfate (HS) is a glycosaminoglycan (GAG) found throughout nature and is involved in a wide range of functions including modulation of cell signalling via sequestration of growth factors. Current consensus is that the specificity of HS motifs for protein binding are individual for each protein. Given the structural complexity of HS the synthesis of libraries of these compounds to probe this is not trivial. Herein we present the synthesis of an HS decamer, the design of which was undertaken rationally from previously published data for HS binding to the growth factor BMP-2. The biological activity of this HS decamer was assessed in vitro, showing that it had the ability to both bind BMP-2 and increase its thermal stability as well as enhancing the bioactivity of BMP-2 in vitro in C2C12 cells. At the same time no undesired anticoagulant effect was observed. This decamer was then analysed in vivo in a rabbit model where higher bone formation, bone mineral density (BMD) and trabecular thickness were observed over an empty defect or collagen implant alone. This indicated that the HS decamer was effective in promoting bone regeneration in vivo.


Asunto(s)
Glicosaminoglicanos , Heparitina Sulfato , Animales , Conejos , Heparitina Sulfato/química , Osteogénesis , Unión Proteica , Regeneración Ósea , Péptidos y Proteínas de Señalización Intercelular/metabolismo
14.
Mar Drugs ; 22(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38535480

RESUMEN

Thromboembolic conditions are the most common cause of death in developed countries. Anticoagulant therapy is the treatment of choice, and heparinoids and warfarin are the most adopted drugs. Sulphated polysaccharides extracted from marine organisms have been demonstrated to be effective alternatives, blocking thrombus formation by inhibiting some factors involved in the coagulation cascade. In this study, four acidic glycan fractions from the marine sponge Sarcotragus spinosulus were purified by anion-exchange chromatography, and their anticoagulant properties were investigated through APTT and PT assays and compared with both standard glycosaminoglycans and holothurian sulphated polysaccharides. Moreover, their topographic localization was assessed through histological analysis, and their cytocompatibility was tested on a human fibroblast cell line. A positive correlation between the amount of acid glycans and the inhibitory effect towards both the intrinsic and extrinsic coagulation pathways was observed. The most effective anticoagulant activity was shown by a highly charged fraction, which accounted for almost half (about 40%) of the total hexuronate-containing polysaccharides. Its preliminary structural characterization, performed through infrared spectroscopy and nuclear magnetic resonance, suggested that it may consist of a fucosylated chondroitin sulphate, whose unique structure may be responsible for the anticoagulant activity reported herein for the first time.


Asunto(s)
Poríferos , Humanos , Animales , Polisacáridos , Glicosaminoglicanos , Anticoagulantes , Coagulación Sanguínea , Sulfatos
15.
J Mech Behav Biomed Mater ; 152: 106440, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340478

RESUMEN

In this study, tissue samples were stress tested to determine if freezing duration and temperature alter their mechanical properties. Tissue samples taken from the small intestine of pigs were assigned to 5 groups: fresh tissue, -28.9 °C for 7 days, -62.2 °C for 7 days, -28.9 °C for 30 days, and -62.2 °C for 30 days. Tissue was stored in PBS for the assigned temperature and duration until testing occurred with the exception of fresh tissue which was tested at sample collection. Before testing, samples were thawed in a room temperature bath, and the thickness was measured. Samples were then mounted in a biaxial test system using four anchoring rakes. Each sample was pulled to a strain of 0.2 with the corresponding forces recorded. This cycle of relaxation to 0.2 strain was repeated 5 times per sample. The thickness and force values were used to find the first Piola-Kirchhoff stress experienced at 0.2 strain and the strain energy. The average stress values in the circumferential direction were: fresh tissue: 22.3 ± 9.85 kPa; -28.9 °C for 7 days: 37.8 ± 14.1 kPa; -62.2 °C for 7 days: 46.5 ± 19.0 kPa; -28.9 °C for 30 days: 46.4 ± 22.7 kPa; -62.2 °C for 30 days: 40.1 ± 19.5 kPa. The stress and strain energy values of frozen tissue were statistically higher than the fresh tissue, although no statistical difference was found by varying duration or temperature. Based on this result, we determined that freezing tissue at any of the tested temperatures or durations increases the stiffness of the thawed tissue. This possibly occurs due to the directional formation of ice, which increases ion concentrations and glycosaminoglycan (GAG) interactions near collagen fibrils.


Asunto(s)
Matriz Extracelular , Glicosaminoglicanos , Animales , Porcinos , Temperatura , Congelación
16.
J Chem Inf Model ; 64(5): 1691-1703, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38410841

RESUMEN

Glycosaminoglycans (GAGs) made of repeating disaccharide units intricately engage with proteins, playing a crucial role in the spatial organization of the extracellular matrix (ECM) and the transduction of biological signals in cells to modulate a number of biochemical processes. Exploring protein-GAG interactions reveals several challenges for their analysis, namely, the highly charged and periodic nature of GAGs, their multipose binding, and the abundance of the interfacial water molecules in the protein-GAG complexes. Most of the studies on protein-GAG interactions are conducted using the TIP3P water model, and there are no data on the effect of various water models on the results obtained in molecular dynamics (MD) simulations of protein-GAG complexes. Hence, it is essential to perform a systematic analysis of different water models in MD simulations for these systems. In this work, we aim to evaluate the properties of the protein-GAG complexes in MD simulations using different explicit: TIP3P, SPC/E, TIP4P, TIP4PEw, OPC, and TIP5P and implicit: IGB = 1, 2, 5, 7, and 8 water models to find out which of them are best suited to study the dynamics of protein-GAG complexes. The FF14SB and GLYCAM06 force fields were used for the proteins and GAGs, respectively. The interactions of several GAG types, such as heparin, chondroitin sulfate, and hyaluronic acid with basic fibroblast growth factor, cathepsin K, and CD44 receptor, respectively, are investigated. The observed variations in different descriptors used to study the binding in these complexes emphasize the relevance of the choice of water models for the MD simulation of these complexes.


Asunto(s)
Glicosaminoglicanos , Simulación de Dinámica Molecular , Glicosaminoglicanos/química , Agua/química , Benchmarking , Heparina/química , Proteínas/química
17.
Am J Sports Med ; 52(4): 1068-1074, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38353029

RESUMEN

BACKGROUND: Chlorhexidine gluconate (CHG) solution is commonly used as an antiseptic irrigation for bacterial decontamination during orthopaedic surgery. Although the chondrotoxicity of CHG on articular cartilage has been reported, the full extent of CHG-related chondrotoxicity and its effects on the extracellular matrix and mechanical properties are unknown. PURPOSE: To investigate the in vitro effects of a single 1-minute CHG exposure on the viability, biochemical content, and mechanics of native articular cartilage explants. STUDY DESIGN: Controlled laboratory study. METHODS: Articular cartilage explants (6 per group) were harvested from femoral condyles of the porcine stifle and sectioned at tidemark. Explants were bathed in CHG solution (0.05% CHG in sterile water) at varying concentrations (0% control, 0.01% CHG, and 0.05% CHG) for 1 minute, followed by complete phosphate-buffered saline wash and culture in chondrogenic medium. At 7 days after CHG exposure, cell viability, matrix content (collagen and glycosaminoglycan [GAG]), and compressive mechanical properties (creep indentation testing) were assessed. RESULTS: One-minute CHG exposure was chondrotoxic to explants, with both 0.05% CHG (2.6% ± 4.1%) and 0.01% CHG (76.3% ± 8.6%) causing a decrease in chondrocyte viability compared with controls (97.5% ± 0.6%; P < .001 for both). CHG exposure at either concentration had no significant effect on collagen content, while 0.05% CHG exposure led to a significant decrease in mean GAG per wet weight compared with the control group (2.6% ± 1.7% vs 5.2% ± 1.9%; P = .029). There was a corresponding weakening of mechanical properties in explants treated with 0.05% CHG compared with controls, with decreases in mean aggregate modulus (177.8 ± 90.1 kPa vs 280.8 ± 19.8 kPa; P < .029) and shear modulus (102.6 ± 56.5 kPa vs 167.9 ± 16.2 kPa; P < .020). CONCLUSION: One-minute exposure to CHG for articular cartilage explants led to dose-dependent decreases in chondrocyte viability, GAG content, and compressive mechanical properties. This raises concern for the risk of mechanical failure of the cartilage tissue after CHG exposure. CLINICAL RELEVANCE: Clinicians should be judicious regarding the use of CHG irrigation at these concentrations in the presence of native articular cartilage.


Asunto(s)
Cartílago Articular , Animales , Porcinos , Clorhexidina/toxicidad , Clorhexidina/análisis , Condrocitos , Glicosaminoglicanos , Colágeno/análisis
18.
Int J Biol Macromol ; 261(Pt 2): 129934, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311145

RESUMEN

Hair follicle (HF) tissue engineering is promising for hair loss treatment especially for androgenetic alopecia. Physiologically, the initiation of HF morphogenesis relies on the interactions between hair germ mesenchymal and epithelial layers. To simulate this intricate process, in this study, a co-flowing microfluidic-assisted technology was developed to produce dual aqueous microdroplets capturing growth factors and double-layer cells for subsequent use in hair regeneration. Microspheres, called G/HAD, were generated using glycosaminoglycan-based photo-crosslinkable biological macromolecule (HAD) shells and gelatin methacrylate (GelMA) cores to enclose mesenchymal cells (MSCs) and mouse epidermal cells (EPCs). The findings indicated that the glycosaminoglycan-based HAD shells display thermodynamic incompatibility with GelMA cores, resulting in the aqueous phase separation of G/HAD cell spheres. These G/HAD microspheres exhibited favorable characteristics, including sustained growth factor release and wet adhesion properties. After transplantation into the dorsal skin of BALB/c nude mice, G/HAD cell microspheres efficiently induced the regeneration of HFs. This approach enables the mass production of approximately 250 dual-layer microspheres per minute. Thus, this dual-layer microsphere fabrication method holds great potential in improving current hair regeneration techniques and can also be combined with other tissue engineering techniques for various regenerative purposes.


Asunto(s)
Gelatina , Glicosaminoglicanos , Ratones , Animales , Gelatina/metabolismo , Microesferas , Glicosaminoglicanos/metabolismo , Metacrilatos , Ratones Desnudos , Biomimética , Cabello , Folículo Piloso , Termodinámica
19.
Mol Genet Metab ; 141(3): 108145, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301529

RESUMEN

Mucopolysaccharidosis type VII (MPS VII) is an ultra-rare, life-threatening, progressive disease caused by genetic mutations that affect lysosomal storage/function. MPS VII has an estimated prevalence of <1:1,000,000 and accounts for <3% of all MPS diagnoses. Given the rarity of MPS VII, comprehensive information on the disease is limited and we present a review of the current understanding. In MPS VII, intracellular glycosaminoglycans accumulate due to a deficiency in the lysosomal enzyme that is responsible for their degradation, ß-glucuronidase, which is encoded by the GUSB gene. MPS VII has a heterogeneous presentation. Features can manifest across multiple systems and can vary in severity, age of onset and progression. The single most distinguishing clinical feature of MPS VII is non-immune hydrops fetalis (NIHF), which presents during pregnancy. MPS VII usually presents within one month of life and become more prominent at 3 to 4 years of age; key features are skeletal deformities, hepatosplenomegaly, coarse facies, and cognitive impairment, although phenotypic variation is a hallmark. Current treatments include hematopoietic stem cell transplantation and enzyme replacement therapy with vestronidase alfa. Care should be individualized for each patient. Development of consensus guidelines for MPS VII management and treatment is needed, as consolidation of expert knowledge and experience (for example, through the MPS VII Disease Monitoring Program) may provide a significant positive impact to patients.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mucopolisacaridosis VII , Embarazo , Femenino , Humanos , Mucopolisacaridosis VII/diagnóstico , Mucopolisacaridosis VII/genética , Mucopolisacaridosis VII/terapia , Glucuronidasa/metabolismo , Hepatomegalia , Esplenomegalia , Glicosaminoglicanos , Enfermedades Raras/tratamiento farmacológico
20.
Glycobiology ; 34(5)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38401165

RESUMEN

Glycosaminoglycans are extended linear polysaccharides present on cell surfaces and within the extracellular matrix that play crucial roles in various biological processes. Two prominent glycosaminoglycans, heparan sulfate and chondroitin sulfate, are covalently linked to proteoglycan core proteins through a common tetrasaccharide linker comprising glucuronic acid, galactose, galactose, and xylose moities. This tetrasaccharide linker is meticulously assembled step by step by four Golgi-localized glycosyltransferases. The addition of the fifth sugar moiety, either N-acetylglucosamine or N-acetylgalactosamine, initiates further chain elongation, resulting in the formation of heparan sulfate or chondroitin sulfate, respectively. Despite the fundamental significance of this step in glycosaminoglycan biosynthesis, its regulatory mechanisms have remained elusive. In this study, we detail the expression and purification of the four linker-synthesizing glycosyltransferases and their utilization in the production of fluorescent peptides carrying the native tetrasaccharide linker. We generated five tetrasaccharide peptides, mimicking the core proteins of either heparan sulfate or chondroitin sulfate proteoglycans. These peptides were readily accepted as substrates by the EXTL3 enzyme, which adds an N-acetylglucosamine moiety, thereby initiating heparan sulfate biosynthesis. Importantly, EXTL3 showed a preference towards peptides mimicking the core proteins of heparan sulfate proteoglycans over the ones from chondroitin sulfate proteoglycans. This suggests that EXTL3 could play a role in the decision-making step during glycosaminoglycan biosynthesis. The innovative strategy for chemo-enzymatic synthesis of fluorescent-labeled linker-peptides promises to be instrumental in advancing future investigations into the initial steps and the divergent step of glycosaminoglycan biosynthesis.


Asunto(s)
Acetilglucosamina , Sulfatos de Condroitina , Galactosa , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Proteoglicanos Tipo Condroitín Sulfato , Oligosacáridos , Péptidos , Glicosiltransferasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA